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ABSTRACT 

This study evaluates the efficacy of applying nine specific statistical tools (Freq, Dice, Cosine, CSM, LLR, Chi2, Yates, 
PMI and McNemar) to eight sub-domains of the BNC to create domain-specific single lexical vocabulary lists for 
particular proficiency levels, and examines the resulting lists for grade level, frequency level, and coverage for basic, 
function, and specialized words. It was demonstrated that it is possible to use particular measures to create lists for 
particular proficiency levels, that some measures extract a greater or lesser number of basic and function words, and that 
different measures extract a different number of specialized words. 
 

1. INTRODUCTION 

To become proficient in English, learners must expand their vocabulary (Nation, 2001). With advances in 
corpus linguistics, we now have large corpora and statistical tools to create our own, real-world vocabulary 
lists. We know that applying conventional frequency and range criteria to a corpus tends to extract general-
purpose vocabulary (Sutarsyah et al., 1994) and is therefore of limited use in identifying technical words. 
Technical vocabulary appears outstandingly in a text or corpus of specific domains, but separating technical 
vocabulary from general-purpose vocabulary is still labor-intensive, time-consuming, and heavily dependent 
on the selector’s expertise in English education and a specialist knowledge of the domain (Zanchetta & 
Baroni, 2005; Chujo & Utiyama, 2006). Some automated means have been proposed to differentiate domain-
specific vocabulary from high-frequency words, and low frequency items from rare items. What is needed at 
this stage is to evaluate how effectively these measures extract targeted-level, domain-specific vocabulary. 

As suggested by Nation (2001, p. 18), ‘one way of making a technical vocabulary is to compare the 
frequency of words in a specialized text with their frequency in a general corpus.’ Some corpus processing 
tools such as WordSmith Tools (Scott, 1996) can identify words which occur with an unusually high 
frequency in a text or corpus when that text or corpus is compared with another corpus by using the chi-
square (Chi2) or chi-square with Yates’s correction (Yates) statistics. Other corpus processing tools are also 
equipped with these co-occurrence scoring tools. For example, Wmatrix (Rayson, 2005) uses log-likelihood 
ratio (LLR), and WordbanksOnline (HarperCollins Publishers Ltd, 2004) uses (pointwise) mutual 
information (PMI) and the t score. A number of corpus tools make use of statistics for the display of scores to 
build wordlists of genre-specific terms (Oakes, 1998, p. 196). As Lemay, L’Homme, and Drouin (2005, p. 
232) pointed out, the tools cited here and studies cited in this paper are all based on the following two general 
assumptions. Firstly, ‘[t]he more frequently a unit appears in a corpus, the more likely it is to be significant in 
this corpus,’ and secondly, ‘a specialized corpus is a reflection of the use of lexical units in a given subject 
field, hence, “specific” units are likely to be terms.’ 

Putting these assumptions into practice, and using co-occurrence scoring tools, a number of corpus-based 
studies have proposed the use of certain statistical measures for comparing word frequency in technical and 
general corpora, and for identifying technical vocabulary (Chujo & Nishigaki, 2006; Nelson, 2000; Takefuta, 
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1981). Although these tools are often referred to as automatic term extraction tools, as Bowker and Pearson 
pointed out, ‘these tools only suggest possible terms, and the list of proposed candidates must be verified by 
a [hu]man’ (2002, p. 174). Oakes (1998, p. 177) suggested that simply deleting the poor candidates would be 
a much simpler task than creating the entire list manually. As more and more researchers use these tools (see 
for example Asmussen, 2005; Ooi et al., 2007), it is important to ‘address the question of how to evaluate a 
number of co-occurrence-based scoring systems without relying on a ‘“feel” for the results’ (Hardcastle, 
2005, p. 1). Furthermore, it is important to clarify the efficiency of the extraction and to find the best 
statistical measure that gives a correct list of terms with the lowest rates of ‘noise and silence’ (Bowker & 
Pearson, 2002, pp. 231-232) by performing an evaluation of measures (Daille, 1995; Utiyama et al., 2004). 
While there have been natural language processing papers comparing statistical measures (Evert & Krenn, 
2005; Wermter & Hahn, 2006), we present a pedagogical perspective with regard to grade level, frequency 
level, specialized word coverage, and type of domain-specific terms the statistical measures are extracting. 

In summary, a review of the literature shows that it is possible to identify domain-specific vocabulary by 
using a wide range of statistical measures such as the LLR and PMI. However, for pedagogical application, it 
is important to identify the proficiency level of the resulting lists and to determine the effectiveness of these 
measures by comparing the extracted words to a large corpora and a greater number of existing control lists. 
In building on previous studies, this present study will compare statistically derived domain-specific 
wordlists from a large corpus, and seek to identify the grade level, frequency level, and specialist vocabulary 
coverage as well as basic vocabulary coverage in order to better understand the usefulness of each particular 
statistical measure. Specifically, the following questions were addressed: 

1.  In order to understand the proficiency level of the top 500 words produced by each measure, at what 
U.S. grade level are these words generally understood?  

2.  In order to understand the frequency level of the top 500 words produced by each measure, at what 
1,000-word frequency band do they occur in a large general English corpus?  

3. In order to understand how well each measure is able to extract domain-specific words, what 
percentage of the top 500 words from each measure appears in specialist dictionaries? What types of 
words do not appear in specialist dictionaries? 

2. PROCEDURE 

2.1 The Data 

2.1.1 Creating a Master List from the BNC informative domain sub-corpora 

The British National Corpus (BNC) is one of the largest electronically-accessible corpora consisting of over 
100 million written and spoken words in British English (Leech et al., 2001). It consists of an approximately 
90 million-word written component of informative and imaginative texts, and a 10 million-word spoken 
component. Seventy-five percent of the written component was drawn from informative texts, and the 
remaining 25 percent from imaginative texts.  The informative domains shown in Table 1 are comprised of 
eight subject fields which are assumed to be specific for each domain. 
 

Table 1. The British National Corpus informative domains 

Domain Types Tokens 

1     Natural Science 2,334 2,806,175 
2     Applied Science 3,357 5,548,470 
3     Social Science 4,557 11,831,404 
4     World Affairs 5,153 13,637,444 
5     Commerce & Finance 2,973 5,883,249 
6     Arts 3,017 4,993,728 
7     Belief & Thought 1,677 2,258,188 
8     Leisure 4,409 9,495,310 
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The procedure for preparing a domain-specific Master List for statistical application is as follows. To 
extract domain-specific vocabularies from each domain or sub-corpus, we first created a lemmatized list from 
each sub-corpus using the CLAWS7 tag set. We listed under a base form of a word or the same lemma, the 
inflectional variants and the declension of nouns, pronouns and adjectives. Next, all British spellings were 
changed to American spellings. In addition, if a word appeared fewer than 100 times in the sub-corpus, it was 
deleted. Thus, all unusual or infrequent words were eliminated. Finally, all proper nouns and numerals were 
identified by their part of speech tags and deleted manually since statistical measures mechanically identify 
these words as technical words (Scott, 1999) and ‘they are of high frequency in particular texts but not in 
others,…and they could not be sensibly pre-taught because their use in the text reveals their meaning’ 
(Nation, 2001, pp. 19-20). This process yielded each domain-specific Master List with the number of 
different words (types), representing the total number of words (tokens) in Table 1. It should be noted that 
this type of approach applied here will target only single-word lexical units (e.g. sub-corpus, wordlist) and 
variants such as compounds (e.g. sub corpus and word list) may be overlooked. 

2.1.2 Control lists 

While it has been established that it is possible to extract domain-specific words, their results can be 
evaluated from various viewpoints.  From a pedagogical viewpoint, we are interested in knowing at what U.S. 
native speaker grade level they generally appear, and how frequently they occur in the entire BNC. 
Furthermore, we wanted to evaluate how effectively the extraction was done in terms of identified 
specialized words, and if so, to what extent. Each of these three methodologies, (grade level, frequency level, 
and technicality) is an important vocabulary selection criterion in the field of selecting vocabulary for 
designing a language syllabus. For the purpose of these comparisons, the following control vocabulary lists 
were used. These control lists are detailed below. 

(1) The British National Corpus High Frequency Word List (hereafter BNC HFWL), is a list of 13,994 
lemmatized words representing 86 million BNC words that occur 100 times or more. The BNC HFWL is the 
core of the BNC. It was used for comparison to statistically determine if and how each of the written domain-
specific words in our master lists would appear differently from the words in a general corpus. It was created 
using the same procedures described above in 2.1.1. For the compiling procedure, see Chujo (2004). 

(2) The Living Word Vocabulary (LWV) (Dale & O’Rourke, 1981) is useful for determining the (U.S.) 
grade level at which the central meaning of a word can be readily understood. Although somewhat dated, 
according to Hiebert (2005, p. 252) the LWV is the only comprehensive existing database on students’ 
familiarity with word meanings. This wordlist includes more than 44,000 items and each presents a 
percentage score for those words or terms familiar to students in grade levels 4, 6, 8, 10, 12, 13, and 16. The 
Basic Elementary Reading Vocabularies (Harris & Jacobson, 1972), with 7,613 different words, is useful for 
determining the (U.S.) grade levels of reading vocabulary ranging from the first grade to the sixth grade. 
Since the data in the LWV begins from the fourth grade, the Basic Elementary Reading Vocabularies was 
used to determine the first, second, and third grade level correlations.  

(3) The Longman Business English Dictionary (Pearson Education Limited, 2000) includes ‘over 20,000 
words and phrases’ based on the analysis of millions of authentic business texts. In this study, we used only 
‘words’ (totalling 4,565 entries) as an existing technical vocabulary control list to evaluate how effectively 
the statistical measures extracted business words. The inflectional and spelling variants were listed under a 
base form of a word, and all British spellings were changed to American spellings. Proper nouns and 
numbers were deleted.  

 (4) West’s (1953) A General Service List of English Words (GSL) contains the 2,000 most basic words 
from the Interim Report on Vocabulary Selection (Faucett et al., 1936) that are considered necessary for 
learning English as a foreign language. It was compared to the extracted lists, as was the Function Words 
from Nation (2001, pp. 430-431) containing 320 words. Function words express grammatical relationships 
with other words within a sentence. They may be prepositions, pronouns, auxiliary verbs, conjunctions, 
grammatical articles or particles. Since the GSL is based on its own word units and Nation’s function words 
included contractions and conjugations for some verbs, and this study is based on ‘lemma’ units, some 
discrepancy might have occurred in counting and comparing words. Therefore the original GSL basic 
wordlist and Nation’s function wordlist were reorganized into comparable lemma units and this reduced the 
lists to 1,867 basic words and 230 function words, respectively. As with the other resources, all British 
spellings were changed to American spellings. 
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2.2 Identifying Outstanding Domain-Specific Words 

We used nine statistical measures: simple frequency (Freq), the Dice coefficient (Dice) and Cosine (Cosine) 
(Manning & Schütze, 1999), the complementary similarity measure (CSM) (Wakaki & Hagita, 1996), the log 
likelihood ratio (LLR) (Dunning, 1993), the chi-square test (Chi2) and chi-square test with Yates’s correction 
(Yates) (Hisamitsu & Niwa, 2001), pointwise mutual information (PMI) (Church & Hanks, 1989), and 
McNemar’s test (McNemar) (Rayner & Best, 2001). Dice and Cosine are statistics widely used to measure 
the similarity between collocations and between terms (Oakes, 1998). CSM is a similarity measure often used 
in optical character recognition. Different tools use different techniques in order to identify potential terms. A 
detailed description of each measure and their mathematical background, along with their strengths and 
weaknesses, can be found in Utiyama et al. (2004) and Chujo and Utiyama (2006), and the notation for these 
kinds of statistics can be found in Scott (1997), Oakes (1998) and Bowker and Pearson (2002). The formula 
for each measure is given in Appendix B. 

In this paper, the statistically extracted rank-ordered lists produced by each measure are called domain-
specific or specialized words/lists/vocabulary. We have used the broad definitions of technical vocabulary or 
specialist vocabulary; i.e. specialized lists contain three types of words: technical vocabulary, or words 
specific to a domain, sub-technical vocabulary, or words more common in a certain domain than elsewhere 
and less obviously technical vocabulary, and general vocabulary, which is a general base of English words.  
To illustrate this point, in the particular field of applied linguistics, the words lemma and morpheme would be 
examples of technical words; type, token, range and frequency would be sub-technical and word and meaning 
would be general words. (These examples are taken from Nation, 2001, p. 198.) 

3. RESULTS AND DISCUSSION 

3.1 Extracted Words Overview 

In order to get an overview of what types of words each measure would extract, we began with just the top 15 
words from each of the nine measures. Due to space limitations, here we show only the top 15 outstanding 
words from one of the eight sub-corpora, commerce/finance, in Table 2. As Asmussen (2005, p. 4) stated, 
‘generally, the designation of the domain proper is among the top fifteen types,’ and these snapshots provide 
a clear and simple illustration of the types of the domain-specific words extracted by each measure. In 
addition, it should be noted that the top 15 extractions made using Freq and Dice and those for Chi2 and 
Yates were almost the same, therefore this data appears as two columns (Freq/Dice and Chi2/Yates) rather 
than as four separate columns. 

At first glance, the top 15 words shown in Table 2 clearly show the general tendencies inherent in the 
extraction of the nine measures. We can see that the lists are very different from one another even though 
they were extracted from the same master list. For example, words identified by Freq and Dice are general 
words that usually appear at the top of high frequency lists. In fact, all of the top 15 words extracted by Freq 
and Dice in Table 2 are function words. The top 15 words identified by Cosine and CSM include function 
words such as the and of, as well as some domain-specific words such as company and market. In the LLR list, 
we can see simple business words such as market, company, and bank. In PMI and McNemar lists, there are 
more complex words such as lading, buyout, arbitrage, issuer, and subcontractor.  The bottom two rows of 
each column show the average frequency score and average word length of these 15 words. As we see from 
Table 2, the average frequency score decreases from left to right or from Freq to McNemar. On the other 
hand, the average word length increases from Freq to McNemar, ranging from 2.8 to 9.3 letters. Although we 
are aware that word difficulty may be influenced by many more factors than frequency and word length, the 
data in Table 2 suggests word difficulty increases as we move from left (Freq) to right (McNemar) for the top 
15 words. This also suggests that specific statistical measures can be used to target specific grade level 
vocabulary.  

To sum up, these nine measures seemed to predominantly extract not only some specific proficiency 
levels of words but also specific types of words. To confirm that this visual hypothesis holds true for the 
longer list, we will explore the grade level and frequency level of the top 500 words in sections 3.2 and 3.3 
and we will examine the component distribution of the top 500 words in section 3.4. (For the justification for 
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using 500 as a cut-off point, please see Utiyama et al., 2004.) Because the top 500 words for Freq and Dice 
and those for Chi2 and Yates were almost the same, only seven columns are shown in the various tables. 

 

Table 2. Top 15 commerce & finance domain-specific words 

Rank Freq/Dice Cosine CSM LLR Chi2/Yates PMI McNemar 

1 the the the market market lading subcontractor
2 be be of company company buyout acquirer 
3 of of be bank bank long-run payout 
4 to to to the price arbitrage issuer 
5 a a a business business subcontractor drafter 
6 and and in price investment stockmarket no-arbitrage
7 in in will rate rate offeror long-run 
8 that for for cost firm drafter shareholding
9 have that company firm cost no-arbitrage headhunter
10 it have market tax tax shareholding tax-free 
11 for will by investment account headhunter buyout 
12 they company or account the payout cross-border
13 on market business share profit issuer headhunting
14 will it this profit contract liquidity actuarial 
15 this by may contract share salesperson stockmarket

Average frequency 152,838 148,062 128,069 42,795 42,795 203 134 

Average Word length 2.8 3.1 3.4 5.6 5.6 8.9 9.3 

3.2 Identifying the Grade Levels of the Top 500 Extractions 

In order for these types of wordlists to be useful pedagogically, we wanted to determine their proficiency 
levels. This was estimated by investigating the number of known words at each grade level of the LWV and 
the reading grade word familiarity levels from Harris and Jacobson (1972).  

Table 3 summarizes the average grade level of the top 500 extractions from each of the eight BNC 
domains. The average grade levels for each measure from the eight domains are shown at the bottom of the 
table and give us a general indication of proficiency level. Table 3 shows that the grade levels increase from 
Freq to McNemar, ranging from grade 3 to grade 10. This investigation of the grade level of each of these 
extracted vocabularies reveals that the potential exists for using specific statistical measures to target specific 
grade level vocabulary. 

 

Table 3. Average grade level of the top 500 extractions for the eight BNC domains 

Domain Freq/Dice Cosine CSM LLR Chi2/Yates PMI McNemar
1    Natural Science grade 3.5 6.0 5.5 7.2 8.2 10.2 10.6 
2    Applied Science 3.3 5.2 5.2 7.5 8.3 11.6 12.0 
3    Social Science 3.2 3.9 5.0 6.2 6.4 11.0 12.1 
4    World Affairs 2.9 3.5 4.8 5.9 6.1 9.7 10.8 
5    Commerce & Finance 3.3 4.3 5.0 6.1 6.5 9.0 10.2 
6    Arts 2.7 3.4 4.2 5.8 6.1 7.7 8.7 
7    Belief & Thought 2.9 4.2 4.7 5.7 5.8 6.8 7.3 
8    Leisure 2.3 2.4 2.9 4.2 4.5 7.4 8.3 

Average grade level per word  
through the eight BNC domains 

grade 3.0 4.1 4.7 6.1 6.5 9.2 10.0 

3.3 Identifying the Frequency Levels of the Top 500 Extractions 

Furthermore, we examined the frequency distribution of the top 500 extracted words by using the BNC 
HFWL, which was divided into fourteen 1,000-word frequency bands of the most frequent words. 
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‘Vocabulary frequency level 1,000’ indicates ranks 1 to 1,000, ‘vocabulary frequency level 2,000’ indicates 
ranks 1,001 to 2,000, and so on. 

Table 4 summarizes the average frequency level of the top 500 extractions from each of the eight BNC 
domains. As we can see from the table, each average frequency level produced by the measures for the eight 
domains varies slightly. In order to get a clear understanding of the graduation of the frequency levels, 
average frequency levels for the same measure from the eight domains are shown at the bottom of the table. 
Of course from Table 4, we can confirm the previous observation that the frequency levels increase from 
Freq to McNemar, ranging from the Freq/Dice, Cosine and CSM words under the 2,000-word level; LLR and 
Chi2/Yates words around the 3,000-word level; PMI at the 5,863-word level; and McNemar at the 6,916-
word level. This observation across domains underscores the possibility that specific statistical measures can 
be used to target specific proficiency level vocabulary. 

 
Table 4. Average vocabulary frequency level of the top 500 extractions from the eight BNC domains 

Domain Freq/Dice Cosine CSM LLR Chi2/Yates PMI McNemar
1    Natural Science 1,244 3,058 2,274 3,890 4,842 6,530 6,974 
2    Applied Science 1,088 1,952 1,752 3,282 3,958 7,048 7,880 
3    Social Science 1,022 1,152 1,366 2,046 2,200 6,532 8,166 
4    World Affairs 1,046 1,254 1,678 2,534 2,710 6,750 8,744 
5    Commerce & Finance 1,070 1,438 1,530 2,326 2,712 4,552 5,694 
6    Arts 1,108 1,858 2,110 3,854 4,064 5,286 5,956 
7    Belief & Thought 1,146 2,174 2,100 2,898 2,946 3,342 3,688 
8    Leisure 1,052 1,364 1,700 2,930 3,276 6,866 8,228 

Average frequency level per 
word through the eight BNC 

domains 
1,097 1,781 1,814 2,970 3,339 5,863 6,916 

3.4 Exploring the Technicality of the Top 500 Extractions 

As we have seen in previous sections, the 500 domain-specific word extractions in the eight domains 
demonstrated a similar tendency according to each statistical measure in grade levels and frequency level. In 
this section, a closer investigation of the content of each domain-specific word extraction was conducted for 
the commerce/finance domain, in order to attempt to characterize the nature of each statistical tool for 
identifying domain-specific words.  

The simplest way to implement this is to take each extracted domain-specific wordlist and compare it 
with three types of vocabularies: function words, basic words, and specialist words. Although there could 
arguably be one more category between basic words and specialist words, i.e. sub-technical words, there is 
currently no standardized means to make a clear distinction, and no clear agreement in the literature on 
defining a sub-technical word. (For a discussion on this, see Baker, 1988; Hutchinson & Waters, 1987; 
Justeson & Katz, 1995; Nation, 2001; or Utiyama & Chujo, 2007.)  

The approach taken here was to count the number of overlapping words between the top 500 words 
extracted by each measure and each of the three different vocabularies as a certain indicator of technicality. 
For the specialist words, dictionary entries were used from the Longman Business English Dictionary for the 
commerce/finance domain. As mentioned in 2.1.2, we used the most cited basic vocabulary, The General 
Service List of English Words (GSL) (West, 1953), for basic words. For function words, we used the function 
words listed in Nation (2001). 

Words on these three types of control lists partly overlap and are not mutually exclusive. For example, 
company, market, business, and bank in the top 15 commerce/finance extracted list belong to both the basic 
words and the specialist words categories. In addition, most function words belong to the basic words 
category. We wanted to clarify how the proportion of each word category (function, basic, and specialist) 
was distributed across the top 500 words extracted by each of the measures for this domain. In order to avoid 
double-counting the results, we considered that a specialist word is one that is recognizably specific to a 
particular topic, field or discipline (Nation 2001, p. 198). Therefore, we eliminated all the function words and 
basic words from the specialist words included in the business dictionary entries. For example, company, 
market, business, and bank only belong to the basic words. Then we discarded all the function words from 
the basic words category. At the end of this procedure we had three exclusive wordlists; a 3,865-word 
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specialized list of business dictionary entries, a 1,732-word list of basic words, and a 230-word list of 
function words.  

Next we compared the top 500 extractions with these three category wordlists to calculate their coverage 
percentage. Figure 1 shows how these three categories of words distribute across the top 500 
commerce/finance extracted words. The overlap with function words is shown with dark grey sections at the 
lowest part of the bars. The next section on the bars shows the overlap with basic words. The next section, 
shown in grey, shows the overlap in percentage between the dictionary entries and the top 500 words. The 
percentages of words not appearing in any of these three categories are denoted by ‘other’ and are shown in 
the white section at the top of each bar. We will look at the coverage of each category of words individually 
in the following sections. 
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Fig 1. The proportion of the three categories of words in the top 500 extractions of the commerce/finance domain 

3.4.1 Function word distribution 

Asmussen (2005, p.5) used LLR for identifying domain-specific words for updating The Danish Dictionary 
and observed ‘frequent function words appearing so saliently ranked in our domain-specific vocabularies.’ 
The coverage percentage of function words extracted by each measure in Figure 1 decrease from left to right 
or from Freq to McNemar; e.g. 21.4 % for Freq; 17.6% for Cosine; 9.6% for CSM; 6.2% for LLR; and 6.0% 
for Chi2/Yates. No function words were extracted by PMI or McNemar. This data gives us a general idea of 
the percentage of function words that each statistical measure might extract from a corpus. 

3.4.2 Basic word distribution 

The coverage percentages of basic words decrease from left to right or from Freq to McNemar: 55.2% for 
Freq/Dice; 41.4 % for Cosine; 40.0% for CSM; 29.6 % for LLR; 27.2 % for Chi2/Yates; 9.8 % for PMI; and 
1.8% for McNemar. Approximately three fourths of the Freq top 500 extractions belonged to either function 
words or basic words. About half of the Cosine and CSM top 500 extractions belonged to function words or 
basic words. The percentage of basic words extracted by PMI and McNemar was less than 10 percent. Seeing 
the high degree of basic and function words extracted by some measures, and few or none extracted by others, 
sheds light on the relationship of the extracted words in both grade level and frequency ranges. Of course it 
makes sense that statistics that extract a higher level of basic and function words would be more highly 
represented in lower grades and higher frequencies. 

3.4.3 Specialist word distribution 

Finally, to evaluate how effectively these measures extracted specialized words, the extracted 
commerce/finance list was compared to the existing specialized word control list. For this we used the 3,865 
entry words in the Longman Business English Dictionary. Unlike the basic and function words, the nine 
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statistical measures produced relevant specialized words, but not in the same regular pattern. The number of 
specialized words increases from left to right or from Freq to PMI but declines slightly for McNemar: 20.4% 
for Freq/Dice; 37.2 % for Cosine; 43.4% for CSM; 56.8% for LLR; 58.6% for Chi2/Yates; 72.4 % for PMI; 
and 53.6% for McNemar. The PMI obtained the highest overlap with the dictionary entries, followed by 
Chi2/Yates, LLR, and McNemar. For PMI in particular, there is about a 72 percent overlap with business 
words.  

In addition to investigating the commerce/finance domain vocabulary, the same procedures were used to 
examine applied science vocabulary. We compared the top 500 BNC applied science extractions with a 
specialized list of science and technology (EST) dictionary entries (Walker, 1999). For PMI in particular, 
there is about a 49 percent overlap with EST words. Considering the gap in overlap between the two domains, 
the domain-specific vocabulary for commerce/finance is perhaps rather less divergent than for the applied 
science or EST domain. Moreover, the EST dictionary is written for students at the junior or senior college 
level. Also considering the conciseness and limited scale of the EST dictionary entries we used in 
comparison with the divergent distribution of words in the broad applied science domain, an overlap of 49 
percent is reasonable.  In a previous study, we compared the equivalent top 500 extractions from the Corpus 
of Professional English (CPE), a 20-million-word English corpus used by professionals in science and 
technology in twenty-two domains and which is probably more concentrated than the BNC applied science 
vocabulary, with this EST dictionary entry. We obtained an approximate 59 percent overlap for PMI (Chujo 
et al., 2007). The data showing specialist word distribution for the applied science domain is given in 
Appendix A.  

3.4.4 ‘Other’ distribution 

Among the top 500 words, some did not appear in any of the three categories of words and these are denoted 
as ‘other’ in Figure 1. The number of ‘other’ words increased from left to right or from Freq to McNemar: 
3.0% for Freq/Dice; 3.8 % for Cosine; 7.0% for CSM; 7.4% for LLR; 8.2% for Chi2/Yates; 17.8% for PMI; 
and 44.6% for McNemar.  

We closely examined the content of the ‘other’ lists for the commerce/finance domain and roughly 
categorized these words into three groups. While the original business dictionary entries contained ‘words 
and phrases,’ we only used ‘word’ entries to create a control list within the confines of this study. Thus a 
certain percentage of these words were parts of these ‘phrases’ such as ‘equitable’ in equitable mortgage and 
‘discretionary’ in discretionary costs, which should have been included in the specialized words category. 
These comprise the first group. The second group contains derivational forms of the ‘word’ entries such as 
deregulation and entrepreneurial. The third are ‘intuitively less typical domain-specific words [which] often 
occur in many different domains’ (Asmussen, 2005, p.7). For example, the top 500 words for Freq/Dice, 
Cosine, CSM, LLR, and Chi2/Yates included some less typical entries such as achieve, approach and 
generally, and top 500 PMI and McNemar words included some candidates that introspectively do not seem 
typical for the commerce domain such as day-to-day, peat, pest and postwar. The percentages of the third 
type of words are 1.8% for Freq/Dice; 1.8% for Cosine; 4.0% for CSM; 3.2% for LLR; 3.0% for Chi2/Yates; 
6.4% for PMI; and 22.8% for McNemar. This underscores the idea that the extracted lists are not meant to be 
definitive and that educators can use these as a starting point for crafting lesson-specific vocabulary. 

4. PEDAGOGIC IMPLICATIONS 

The goal of this study has been to examine the effectiveness of the statistical measures to target a particular 
proficiency level and to gage whether or not the lists generated in fact are specialist words when compared to 
a general corpus. Educators wishing to produce their own lists can find value in the application of various 
statistics to their own corpora even though the lists generated are not necessarily definitive.  In using these 
measures, it is possible to narrow the number of candidates to create a wordlist at a targeted proficiency level.  

Using the pedagogical findings of this study, we were able to develop a web-based vocabulary-learning 
program for Japanese college students for teaching intermediate-level business vocabulary, utilizing extracted 
LLR lists from the 7.12-million-word commerce/finance (written business) component and the 1.32-million-
word spoken business component of the BNC. A description of the creation of this resource from 
systematically selecting the vocabulary to developing the program is provided in Chujo, Oghigian, Nishigaki, 
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Utiyama, and Nakamura (2007). We found that the ease and speed of selecting targeted spoken and written 
business words saved both time and cost. We also created an English for Academic Purposes (EAP) web-
based vocabulary-learning material from the 1.27-million-word educational spoken component of the BNC 
based on the selected beginner, intermediate, and advanced level spoken EAP words utilizing these nine 
measures. These web programs are available at http://www5d.biglobe.ne.jp/~chujo/. 

5. CONCLUSION 

Although it has been shown that specific statistic can extract certain types of words from a large corpus, little 
has been known about what types and levels of domain-specific terms the statistical measures are actually 
extracting. This study was conducted to answer this question. We were able to obtain a stable result showing 
that a specific measure tends to extract words within a similar grade level, frequency level, and type of 
vocabulary. These results support those of prior studies based on either a smaller 40,000-word Kyoto tourism 
corpus (Chujo, Utiyama & Oghigian, 2006) and 100,000-word TOEIC corpus (Chujo & Genung, 2005), or a 
larger 17-million-word corpus of professional English (CPE) for science and technology (Chujo, Utiyama & 
Nakamura, 2007). This study in combination with these previous studies shows that the results of the 
statistical measures on corpora are quite similar even if the examined corpora sizes and domains are different.  

From a practical pedagogical perspective, the potential for using corpora to create real-world vocabulary 
lists to target specific proficiency levels and specific domains is certainly worth exploring. In this study, we 
have found that it is possible to use particular statistical measures to extract certain types of words from a 
corpus. More specifically, we now know that Freq, Dice, Cosine and CSM tend to extract a greater number of 
basic and function words, and that not surprisingly, these words tend to be understood at lower grade levels 
and are therefore more appropriate for beginner level students. LLR, Chi2 and Yates tend to extract fewer 
basic and function words and more intermediate level words, and PMI and McNemar tend to extract few or 
no function or basic words and tend to extract words more applicable to higher level students. These findings 
are supported by the appearance of these types of words in higher, mid-range and lower frequency bands, 
respectively.  

When comparing the extracted domain-specific lists to control lists, i.e. comparing our extracted 
specialized vocabulary to similar-domain specialist dictionaries, we were able to obtain a maximum overlap 
of 72 percent for commerce/finance. That means generally, culling a corpus for a particular type of 
vocabulary might only net half of the possible items available. One of the main reasons for this is that the 
study was based on extracting only single-word units, e.g. company, or management, rather than multi-word 
units such as equitable mortgage and discretionary cost, and the control lists (dictionaries) included 
derivational forms that were not included in the lemmatized lists. Both of these factors can be addressed in a 
future study.  

 It could be argued that teaching multi-word units of meaning are more effective for students than single-
unit vocabulary lists. Once we understand the nature of statistical extraction for single-word units, an 
important next step would be exploring the extraction of multi-word units. In the meantime, this work shows 
that statistical extraction of specific vocabulary from corpora can produce at least a workable starting point 
for educators. As studies continue, we hope the effectiveness of this approach will prove to be a useful tool. 
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APPENDIX A  

The Proportion of the Three Categories of Words in the Top 500 Extractions of the Applied Science Domain 
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Note that the overlap with function words is shown with dark grey sections at the lowest part of the bars. The 
next section on the bars shows the overlap with basic words. The next section, shown in grey, shows the 
overlap in percentage between the Concise Illustrated Dictionary of Science and Technology entries and the 
top 500 words. The percentages of words not appearing in any of these three categories are denoted by 
‘other’ and are shown in the white section at the top of each bar. As seen with the commerce/finance 500 
extractions, there is a decrease in the number of function and basic words and an increase in specialized 
words as we move from left to right, but declines slightly for McNemar. The PMI obtained the highest 
overlap with the EST dictionary entries, followed by McNemar, Chi2/Yates, and LLR.  
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APPENDIX B 

The Formulas for the Nine Statistical Measures 
 

The statistical score of word X, i.e. the extent of the dissimilarity between two word lists, is calculated by 
comparing the patterns of the frequency of each word in the Commerce /Finance word list with the frequency 
of the same word in the BNC HFWL.  
 
The program computes a, b, c, d, and N, and cross-tabulates these: 

a stands for the frequency of word X in the Commerce/Finance word list  
b stands for the frequency of word X in the BNC HFWL  
c stands for the number of running words in Commerce/Finance not involving word X 
d stands for the number of running words in BNC HFWL not involving word X 
N denotes a + b + c + d 
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Correction of the above three measures： 

  0LLRbcadsignLLR   

  02Chibcadsign2Chi   

  0YatesbcadsignYates   

 








otherwise1

0zif1
zsign  

 cba2a2Dice   

  cabaaesinCo   

    dbcabcadCSM   

    cabaanPMI  log  

cb

)cb(
McNemar

2




  

aFreq   


