From Bio Journal - February 2008

MAFF announces final report on GM crop promotion plan

The MAFF investigative commission on how to proceed with GM farm products R&D met on 17 December 2007 to finalise a plan, which was announced on 19 December. The commission consisted of 11 members and their closed-door meetings were held beginning 22 May 2007. The final report of the commission will be used as a road map to move forward toward GM crop commercialization.

The formulation of this plan means that the government is taking the initiative since it is remote probability that the private sector will do so in this field. The targeted GM crops for the next five years are GM nutritionally-enhanced rice, GM multi-disease tolerant rice and GM environmental stress tolerant rice. The mid-and-long term targets are, GM high yield, functional, high-value added feed, GM plants that will absorb harmful substances and GM rice as a biofuel crop.

The report being published at this time of year implies that it is intended for aiding the acquisition of budget for GM crop development.

The original report in Japanese is here.

MHLW approves Okayama University gene therapy plan

At a meeting of the science and technology subcommittee of the Health Science Council of MHLW on 27 December 2007, an application for an implementation program for gene therapy by Okayama University was approved. The disease to be treated is cancer of the prostate gland. A vector (carrier) into which the Interleukin-12 gene has been inserted is injected into the cancer to stimulate immunity, attack the cancer cells and alleviate the disease. An adenovirus is used as the carrier. This is the 22nd gene therapy program to be approved. (See BJ December 20007) At the meeting, a report from a subordinate committee, the working party on gene therapy for cancer, was read out by the secretariat, and the program was immediately approved.

General agreement on 'limited acceptance' of surrogacy

The 13th meeting of the Science Council of Japan's "Committee on the State of Assisted Reproduction Medicine" was held on 26 December 2007. (See BJ January 08) The issues to be presented in the report to be finalized by the end of January 2008 were discussed, including the parent-child relationship in the case of surrogate birth. On whether or not to actually allow surrogate birth, one committee member stated that, "I have not yet fully abandoned the position of a full ban." (Tohoku University Graduate School Professor MIZUNO Noriko) However, there is a general agreement for 'limited acceptance' of surrogacy. The range of that limitation is to be finalized in the remaining two meetings of the committee.

Japan Democratic Party formulates draft bill for basic law on biodiversity

The Japan Democratic Party announced a "draft bill for a basic law on biodiversity" on 10 January 2008. The party will accept public comments until 22 February 2008 and publish a final version in early March. The intention is to submit the bill to parliament in mid-March. It appears that this bill has been drafted because the government's "Draft National Biodiversity Strategy" (See BJ November 2007) gives away too much to the industry and is weak on environmental protection.

Closeup: Appearance of human iPS cells will accelerate regenerative medicine

The paper announcing that Professor YAMANAKA Shinya and his research group at the Kyoto University Institute for Frontier Medical Sciences had succeeded in producing induced pluripotent stem cells, or iPS cells (See BJ January 2008), from adult skin cells appeared in the electronic edition of the science journal "Cell" on 20 November 2007. On the following day, all the newspapers printed this news at the top of the front page. While pointing out safety issues such as possible cancer, the headlines used highly anticipatory language to speak of "groundbreaking progress in regenerative medicine" (Yomiuri Shinbun). Regenerative medicine is a novel medical notion that the partial regenerative ability of the human body can be used to heal wounds and diseases. Organs and tissues that have been damaged by disease and so on can have new cells transplanted to them to induce recovery of bodily functions to normal.

iPS cells are said to have almost the same properties as ES cells. They are 'pluripotent cells' which continue to multiply while maintaining the ability to differentiate into various types of cell. It is thought that when differentiation is induced under certain conditions, these cells can be made to form blood cells or nerve cells and so on. Compared with ES cells, which are produced from fertilized ova, the main reason for thinking that iPS cells are a breakthrough is that they have been produced from somatic cells which have differentiated into specific cells. The method which Prof. Yamanaka and his group used is to have four genes inserted into commercially available research-use white skin cells using a retrovirus as the vector (gene carrier) to 'initialize' the skin cells. After approximately one month of culturing, cells with similar properties to ES cells are extracted. These are the iPS cells.

However, there are safety issues involved in the production process. This has to do with the use of a retrovirus. Although the gene insertion efficiency of retrovirus vectors developed for gene therapy is high, it has been pointed out that there is a danger of causing cancers. In fact, in gene therapy for (X-linked severe combined immunodeficiency) X-SCID using retrovirus vectors in France, leukemia has developed as a side effect in 3 cases out of 11 trial patients. However, even if this problem is overcome, there still remains the greatest problem of iPS cells and industrial resourcification of the human body.

Regenerative medicine is now receiving attention as the darling of the 21st century biotechnology industry, its market potential, when including associated industries, amounting to several tens of trillions of yen - several hundreds of billions of US dollars. iPS cell research is also being carried out at the University of Wisconsin by a team under Professor James Thomson, and international competition is heating up. MEXT is planning to extend an approximate 10 billion yen - 100 million US dollar - emergency support to Prof. Yamanaka and his research group. It is certain that from now on, the technological development of regenerative medicine will surge forward at a fast pace on the two wheels of 'treatment' and 'economic stimulation'. This is because it appears that iPS cell technology holds the potential for producing as many cells necessary for transplants on an industrial level.

Note: Links are provided for the information of users of this website. Links to websites in no way implies CBIC endorsement for views expressed in those websites, nor can CBIC take any responsibility for the content of those websites.

(English Index)